Optimal Sampling for Parameters Estimation
نویسندگان
چکیده
In the problems concerning prediction and modeling, parameters estimation constitutes one of the main uncertain items that must be taken into account. The easiest way to minimize this uncertainty is to collect great amounts of data. The aim of this work is to build a decision model able to choose the optimal position of the sample point used for the parameters estimation, minimizing the parameters uncertainty. The decision model is applied to the estimation of the dispersivity coefficients, longitudinal and transversal, from soil column experiment. The classical design of experiments techniques are based on the optimization of the amount of information obtained from experimental data with the hypothesis that the sample domain is defined on a continuous space over time and position. Since this assumption does not reflect the real experimental situation, especially when field campaigns are to be performed and the position of the piezometric wells is fixed, an approach based on discrete optimization over a fixed grid of possible sampling is proposed. The soil column representation is discretized in the 2D domain, while the concentration experimental data are generated using a rigorous analytical solution of the advection dispersion model and a Monte Carlo simulator to generate the experimental error at given variance. In order to define the optimal sampling points in the soil column, binary decision variables are introduced: they assume value one when the concentration is measured at a specific point and time, zero otherwise. The objective function to be finally minimized is proportional to the calculated covariance of the estimated parameters and to the decision variables.. The formalized constraints regard the possible number of measures, according to the available funds. Finally, the results of the optimisation problem are discussed.
منابع مشابه
Optimal Estimation of Weibull Distribution Parameters in order to Provide Preventive-Corrective Maintenance Program for Power Transformers
In this paper, a new method for modelling and estimation of reliability parameters of power transformer components in distribution and transmission voltage levels for preventive-corrective maintenance schedule of transformers is proposed. In this method, with optimal estimation of Weibull distribution parameters using least squares method and input data uncertainty reduction, failure rate and p...
متن کاملSampling plans for fitting the psychometric function.
Research on estimation of a psychometric function psi has usually focused on comparing alternative algorithms to apply to the data, rarely addressing how best to gather the data themselves (i.e., what sampling plan best deploys the affordable number of trials). Simulation methods were used here to assess the performance of several sampling plans in yes-no and forced-choice tasks, including the ...
متن کاملNumerical Parameter Identifiability and Estimability: Integrating Identifiability, Estimability, and Optimal Sampling Design
We define two levels of parameters. The basic parameters are associated with the model and experiment(s). However, the observations define a set of identifiable observational parameters that are functions of the basic parameters. Starting with this formulation, we show that an implicit function approach provides a common basis for examining local identifiability and estimability and gives a lea...
متن کاملAn approximate solution to optimal Lp state estimation problems
We consider optimal estimation problems characterized by a state vector with i) dynamics described via a differential equation with Lipschitz nonlinearities, ii) partial information provided via a Lipschitz nonlinear mapping, and iii) an Lp norm measure of the estimation error to be minimized. An approximate solution of such optimal estimation problem is searched for by restricting the optimiza...
متن کاملOptimal Estimation and Sampling Allocation in Survey Sampling Under a General Correlated Superpopulation Model
Sampling from a finite population with correlated units is addressed. The proposed methodology applies to any type of correlation function and provides the sample allocation that ensures optimal efficiency of the population parameters estimates. The expressions of the estimate and its MSE are also provided.
متن کاملBayesian Growing and Pruning Strategies for Map-optimal Estimation of Gaussian Mixture Models Bayesian Growing and Pruning Strategies for Map-optimal Estimation of Gaussian Mixture Models
Real-time learning requires on-line complexity estimation. Expectation-maximisation (EM) and sampling techniques are presented that enable simultaneous estimation of the complexity and continuous parameters of Gaussian mixture models (GMMs) which can be used for density estimation, classiication and feature extraction. The solution is a maximum a posteriori probability (MAP) estimator that is c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004